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Cancer Stem Cells

* What is a cancer stem cell? Is it a distinct
entity or a potential state arising from
epigenetic plasticity?

 What is the cell of origin and how does this
relate to the cancer stem cell hypothesis?

 What are alternative explanations for tumour
heterogeneity?



If every cell has the same DNA, do all cells have
the same potential and if they have the same
potential, do they have the same fate?




Differentiation is a Reversible Process Regulated Epigenetically

Dolly: The Cloning of a Sheep, 1996
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Induced Pluripotent Stem Cells

Four strategies to induce reprogramming of somatic cells

CHALLENGES PROMISES

Nuclear transfer
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Figure 1. Four Strategies to Induce Repro-
gramming of Somatic Cells

(1) Nuclear transfer involves the injection of a
somatic nucleus into an enucleated oocyte, which,
upon transfer into a surrogate mother, can give
rise to a clone (“reproductive cloning”), or, upon
explanation in culture, can give rise to genetically
matched embryonic stem (ES) cells (“somatic
cell nuclear transfer,” SCNT). (2) Cell fusion of
somatic cells with ES cells results in the generation
of hybrids that show all features of pluripotent ES
cells. (3) Explantation of somatic cells in culture
selects for immortal cell lines that may be pluripo-
tent or multipotent. At present, spermatogonial
stem cells are the only source of pluripotent cells
that can be derived from postnatal animals. (4)
Transduction of somatic cells with defined factors
can initiate reprogramming to a pluripotent state.

Cell 132, 567-582, February 22, 2008 22008 Elsevier Inc.



Stochastic Epigenetic Events in Cellular
Reprogramming

Reprogramming involves sequential activation of pluripotency markers  Figure 3. Reprogramming Involves Sequen-

and stochastic epigenetic events tial Activation of Pluripotency Markers and
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Model of core ES cell regulatory circuitry
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Figure 5. Model of Core ES Cell Regulatory Circuitry

The Oct4, Sox2, and Nanog transcription factors (blue) occupy actively tran-
scribed genes, including transcription factors and signaling components nec-
essary to maintain the ES cell state. The three regulators also occupy silent
genes encoding transcription factors that, if expressed, would promote other
more differentiated cell states. At this latter set of genes, RNA polymerase Il
(POL2) initiates transcription but does not produce complete transcripts due
to the repressive action of PcG proteins. The PcG proteins prevent RNA poly-
merase from transitioning into a fully modified transcription elongation appara-
tus (represented by phosphorylated “stars” on the tail of the POL2 enzyme).
The interconnected autoregulatory loop, where Oct4, Nanog, and Sox2 bind
together at each of their own promoters, is shown (bottom left).

Cell 132, 567-582, February 22, 2008 22008 Elsevier Inc.



Conclusion

Differentiation is regulated through epigenetic mechanisms and,
due to the reversible nature of epigenetic changes, it is possible to
reverse the differentiation process and restore a pluripotent state.

Epigenetic processes can contribute to the generation of human
cancers by inactivating tumor suppressor genes and activating
growth promoting genes.



Cancer Therapy

* Historically has targeted proliferation based
on the assumption that cancer cells are
engaged in uncontrolled proliferation.

* Assumes that a sensitive cancer is inherently
sensitive in a homogeneous manner unless/
until resistance develops. This is true even
with molecularly targeted therapies (e.g.,
Herceptin).



Historical Observations

Solid and “liquid” cancers exhibit significant heterogeneity

Although the first tumor grafts were generated by transplantation of a single tumour cell (mouse
leukemia) (Am. J. Cancer, 1937, 31:276-282), subsequent studies showed that transplantation was
often inefficient, requiring up to thousands of cells

Cell proliferation studies in the 40s-70s revealed that only a small fraction of cells were
proliferative and that there were two subpopulations of proliferative cells: one that cycled rapidly
and was responsible for generating the bulk of the cells and one that cycled very slowly. Based on
the similarity with hematopoietic stem cells, the slow cycling cells were proposed to be cancer
stem cells (Clarkson, 1974. Control of Proliferation in Animal Cells. New York, NY: Cold Spring
Harbor Laboratory; 1974 p. 945-972).

Observed that Leukemic Stem Cells enter the cell cycle in response to cellular depletion of the
tumor during treatment.

Focus shifted to the proliferative fraction and AML-CFU cells were isolated and these were
morphologically distinct from the bulk of the colony that they formed.

Till and McCulloch (1961) (Radiation Research 14:213-222) demonstrated the existence of a single
hematopoietic stem cell that was capable of reconstituting all hematopoietic lineages. This
contrasted with the view at the time that there were separate stem cells for each lineage.

The development of cells surface antigens and fluorescence activate cell sorting (FACS) to separate
cells with different surface antigens was critical in establishing lineages in hematopoiesis.



Tumor cells are biologically equivalent Behavior cannot be predicted by intrinsic
but behave variably due to stochastic characteristics; therefore, tumor-initiating
influences (intrinsic and extrinsic) activity cannot be enriched
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Figure 2. Models of tumor heterogeneity. Tumors are composed of phenotypically and functionally heterogeneous cells. There are 2 theories as to how this heterogeneity
arises. According to the stochastic model, tumor cells are biologically equivalent, but their behavior is influenced by intrinsic and extrinsic factors and is therefore both variable
and unpredictable. Thus, tumor-initiating activity cannot be enriched by sorting cells based on intrinsic characteristics. In contrast, the hierarchy model postulates the existence
of biologically distinct classes of cells with differing functional abilities and behavior. Only a subset of cells can initiate tumor growth; these cancer stem cells possess
self-renewal and give rise to nontumorigenic progeny that make up the bulk of the tumor. This model predicts that tumor-initiating cells can be identified and purified from the
bulk nontumorigenic population based on intrinsic characteristics.

Dick J.E. (2008) Blood 112:4793-4807



Basis of heterogeneity-Assumptions of
Classical Models

* Intrinsic and extrinsic but largely stochastic
events are responsible for creating heterogeneity

e Stem cell population that is biologically distinct
and maintains itself through a self-renewal
process. The distinct functional and phenotypic
differences between cells is thought to be
primarily epigenetic in nature. The Stem Cell
Hypothesis, then, mirrors aspects of normal
development.



Figure 1. Labeling pattern of leukemic cells in marrow of patient 1.
Patient 1, a patient with acute myelomonocytic leukemia, received a
continuous 10-day infusion of tritiated thymidine. Leukemic cells were
arbitrarily divided into types |, Il, and Ill based on increasing levels of
morphologic maturity (type | indicates primitive blast forms; type IIl, most
differentiated cells). At the end of the 10-day infusion, most type Il and type
Il cells were labeled in both marrow (shown here) and blood (not shown),
but only 409% of type | cells were labeled, reflecting their slow proliferative
rate. Many of the type | cells remained highly labeled for over 3 weeks after

the infusion. Reprinted from Clarkson'” by permission.

Dick J.E. (2008) Blood 112:4793-4807
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stem Cells

Self-renewal Proliferation
or and
Differentiation Differentiation

Figure 2.5. Relationship between several of the characterized hematopoietic stem cells and early
progenitor cells. Differentiation is indicated by colors; the more intense the color, the more mature the
cells. Surface marker distinctions are subtle between these early cell populations, yet they have clearly
distinct potentials. Stem cells can choose between self-renewal and differentiation. Progenitors can
expand temporarily but always continue to differentiate (other than in certain leukemias). The mature
lymphoid (T-cells, B-cells, and Natural Killer cells) and myeloerythroid cells (granulocytes, macrophages,
red blood cells, and platelets) that are produced by these stem and progenitor cells are shown in more
detail in Figure 2.1.

Source: http://stemcells.nih.gov/info/2006report/2006chapter2.htm
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Figure 2.2. Enrichment and purification methods for hematopoietic stem cells. Upper panels illustrate
column-based magnetic enrichment. In this method, the cells of interest are labeled with very small iron
particles (A). These particles are bound to antibodies that only recognize specific cells. The cell suspension
is then passed over a column through a strong magnetic field which retains the cells with the iron particles
(B). Other cells flow through and are collected as the depleted negative fraction. The magnet is removed,
and the retained cells are collected in a separate tube as the positive or enriched fraction (C). Magnetic
enrichment devices exist both as small research instruments and large closed-system clinical
instruments.

Source: http://stemcells.nih.gov/info/2006report/2006chapter2.htm
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Figure 2.3. Assays used to detect hematopoietic stem cells. The tissue culture assays, which are used
frequently to test human cells, include the ability of the cells to be tested to grow as
quot;cobblestonesquot; (the dark cells in the picture) for 5 to 7 weeks in culture. The Long Term Culture-
Initiating Cell assay measures whether hematopoietic progenitor cells (capable of forming colonies in
secondary assays, as shown in the picture) are still present after 5 to 7 weeks of culture.

Source: http://stemcells.nih.gov/info/2006report/2006chapter2.htm
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Figure 3. Hierarchy of leukemia stem cells in AML.
Like the normal hematopoietic system, AML is organized
as a hierarchy of distinct cell classes that is sustained by
a subset of leukemia stem cells (or SCID-leukemia
initiating cells [SL-ICs], as assayed in immunodeficient
mice). Genetic tracking experiments have shown that
SL-ICs are heterogeneous in their ability to repopulate
secondary and tertiary recipients, pointing to the exis-
tence of distinct classes with differing self-renewal capac-
ity, similar to what is seen in the nommal hematopoietic
stem cell compariment. Shori-term (ST) SL-ICs are able
to initiate leukemia in primary but not secondary recipi-
ents, whereas long-term (LT) SL-ICs can sustain leuke-
mic growth for multiple passages. Quiescent LT SL-ICs
may not initiate a substantial graft in primary recipients
and may therefore only be detected on serial
transplantation.
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Figure 4. Models of tumor initiation and progression. Cancer stem cells may arise through neoplastic changes initiated in normal self-renewing stem cells or downstream
progenitors, causing expansion of the stem cell and/or progenitor pool. Secondary events may occur in expanded pools of target cells. Oncogenic events acquired by
short-lived progenitors may not persist if self-renewal is not reactivated, as these cells will probably die or undergo terminal differentiation before enough mutations occur for full
neoplastic transformation. Tumor progression may be linked to ongoing genetic instability and acquisition of additional changes by cancer stem cells, or possibly by
nontumorigenic bulk cells if such changes endow self-renewal. In both cases, evolution of tumor phenotype (including genetic and epigenetic signatures) may be observed.

Dick J.E. (2008) Blood 112:4793-4807
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Table 1 Patient-to-patient heterogeneity in expression of CD34 and CD38 antigens

Patient FAB Age/Sex Level of engraftment Percent of Percent of Estimated frequency

subtype of NOD/SCID mice with CD34* CD34"CD38 of SL-IC per 10°
10-20 x 10° MNCs in MNCs in MNCs MNCs

1 Mi 64/F 74+ 10 43 0.8 100-200

8 M4 62/F 45+ 8 80 1.0 1

10 M4 58/M 62+5 1 0.75 0.2

12 M4 65/M 76 +6 2.0 0.2 49

13 M4 69/M 37+7 95 2.0 0.2

14 M4 S59/F 28+9 1.1 0.2 2

18 M5 71/F 18+ 6 0.3 0.02 0.2

FAB, French-American-British criteria® for subtypes; NOD/SCID mice, non-obese diabetic mice with severe combined immunodeficiency disease;
MNCs, mononuclear cells; SL-IC, SCID leukemia-initiating cell.
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Fig. 3 Engraftment of NOD/SCID mice with AML cells fractionated according to CD34 and CD38 expression. Mice were transplanted with the indicated num-
ber of purified CD34", CD34", CD34"CD38 or CD34'CD38’ cells. Cells from seven different AML patients have been studied (nos. 1, 8, 10, 12, 13, 14 and 18).
Human cell engraftment was estimated by Southern blot 4 to 6 weeks after transplant. The different concentrations of sorted cells and the patient identifica-
tion are indicated. Each dot represents a mouse and the horizontal line indicates the mean level of human cells engrafted in the murine bone marrow.
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Fig. 6 A model comparing the organization of the normal and AML human hematopoietic system. This model postulates that the SRC assay detects a primi-
tive human stem cell on the basis of repopulation of NOD/SCID mice. Although some overlaps undoubtedly exist, the SRCs are more immature than most
multipotential progenitors (for example, 5 week-LTC-IC, colony-forming unit-granulocyte/erythrocyte/megakaryocyte/macrophage) and committed clono-
genic progenitors’®. The committed progenitor pool produces all the mature myelo-erythroid cells found in the peripheral blood. On the basis of the data
presented here, this mode! postulates that a leukemogenic event occurs in a primitive stem cell. As a consequence, the cell has increased self-renewal and
some impairment of the normat developmental program, so normal lineages cannot develop. This leukemic stem cell is detected in the SL-IC assay on the
basis of the initiation of AML after transplantation into NOD/SCID mice. The SL-ICs produce clonogenic leukemic progenitors (AML-CFU), which in turn pro-
duce leukemic blasts. The nature of the leukemogenic event(s), and not the lineage commitment of the leukemia-initiating cell, determines the differentia-
tion program of the leukemic blasts. Hence, this model suggests that the AML clone is organized as a hierarchy with many similarities to the normal system.



Critical to the development of the Cancer Stem Cell
Hypothesis is the identification of cell surface
markers that can distinguish cells with tumour
initiating potential from those that do not. Without
distinct features identifying these cancer stem cells,
there is no way of distinguishing between the clonal
selection hypothesis and the stem cell hypothesis.

How important is the model system (NOD/SCID
mice) in the identification of a subset of cells as the
tumour initiating population?
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Figure 1| Only rare human melanoma cells form tumours in NOD/SCID
mice. A, Tumour development after subcutaneous injection of
unfractionated primary melanoma cells directly from seven patients into
NOD/SCID mice. Dots represent the times after injection at which
individual tumours were first palpable and are coloured according to cell
dose. Crosses are injections that failed to form tumours. Dotted line
indicates 8 weeks after injection. B, All tumours were diagnosed as metastatic
melanoma by clinical pathology (see Supplementary Table 1 for more
information). The tumours that formed in mice (a, arrow) became large,
grew quickly once they were palpable and were histologically similar to the
patient tumours from which they were derived. Flow cytometry
demonstrated that most tumour cells expressed human HLA (b; dotted line
represents unstained control). Some tumours were highly pigmented

(c) whereas others contained variable pigmentation (d) or were amelanotic
(scale bar, 1 cm). Sections stained with haematoxylin and eosin through the
same tumours showed pigmented cells (e, f, see arrows; bars, 25 pm).
Cytospun cells contained melanin, as indicated by Fontana-Masson staining
(g, h, arrows; bars, 25 pm), and showed widespread S100 staining (i, j), a
marker used to diagnose melanoma®. C, Limiting dilution analyses of the
frequency of tumorigenic melanoma cells in Fig. 1A at 8 weeks or 32 weeks
after transplantation (*P < 0.0001).



Single melanoma cell NOD/SCID li2rg~-

Figure 4 | Efficient tumour development from the xenotransplantation of
single human melanoma cells. a, Flow-cytometrically isolated human
melanoma cells derived from xenografts from four patients were diluted into
Terasaki microwells such that wells containing single cells could be identified
by phase contrast microscopy. In control experiments, the presence of single
cells was confirmed by the observation of single nuclei with Acridine Orange
staining (inset) in 90 out of 90 cases. The single cells were mixed with
Matrigel and injected into NOD/SCID II2rg '~ mice. Tumours arising from
' the injection of single cells were confirmed to be melanoma by haematoxylin
and eosin, S$100 and HMB45 staining (right panels show sections from a
tumour that arose from a single cell obtained from patient 214). b, The

b percentage of single-cell injections (69/254 = 27%) that formed tumours
within 20 weeks of transplantation. Weeks to first palpability (mean * s.d.)

Patient Engraftment rate Melanoma-initiating ~ Weeks to first 2t indicated for each st of tumours.
tumours/injections (%)  cell frequency (95% palpability
confidence interval)
205 11/89  (12%) 1/8  (1/5-1/14) 7+2
214 12/73 (16%) 1/6  (1/4-1/10) 104
481 40/62 (65%) 1/2 (1/1-1/2) 12+3
487 6/30 (20%) 1/ (1/3-1/11) 10+1
All 69/254 (27%) 1/4 (1/3-1/5) 11+3

Quintana et al. (2008). Nature 456:593-598



Table 1. Models to Explain Cancer Cell Heterogeneity

Cancer Stem Cell Model (Stochastic) Clonal Evolution Model®
Frequency of cancer cells with tumorigenic potential Rare to moderate High
Phenotype of cancer cells Heterogeneous Heterogeneous or homogeneous
Tumor organization Hierarchical Not necessarily hierarchical
Intrinsic differences between tumorigenic and Stable, epigenetic Unstable, epigenetic or genetic
nontumorigenic cells
Rational approach to therapy Possible to target only tumorigenic cells Target most or all cells
Compelling clinical evidence Germ lineage cancers High-grade B cell lymphoblastic leukemia®

“The clonal evolution model holds that genetic and epigenetic changes occur over time in individual cancer cells, and that if such changes confer a
selective advantage they will allow individual clones of cancer cells to out-compete other clones. Clonal evolution can lead to genetic heterogeneity,
conferring phenotypic and functional differences among the cancer cells within a single patient. Note that the clonal evolution and cancer stem cell
models are not mutually exclusive in cancers that follow a stem cell model, as cancer stem cells would be expected to evolve by clonal evolution.
However, heterogeneity in cancers that do not follow a cancer stem cell model (not hierarchically organized into epigenetically distinct tumorigenic
and nontumorigenic populations) could be determined entirely by clonal evolution.

B cell lymphoblastic leukemias have extraordinarily high frequencies of leukemogenic cells that are not hierarchically organized in a mouse model
(Williams et al., 2007) and appear homogeneous by histopathology in patients, yet heterogeneity can arise in sensitivity to therapy through clonal
genetic changes.

Shackleton et al. (2009) Cell 138:822-829
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Figure 1. Testing the Cancer Stem Cell Model

During the dissociation of solid tumors (left), conditions must be optimized to maximize the preservation of cell viability and surface marker expression. During
cell separation (middle), care must be taken to use viability dyes and markers to exclude dead cells, hematopoietic cells, endothelial cells, and stromal cells (if
possible) by flow cytometry from the cancer cell preparation. The tumorigenicity of all cells must be tested in assays optimized for the engraftment of human
cancer cells (right). For nontumorigenic cell populations, it is critical to confirm that they contain live cancer cells, rather than normal cells or debris. If markers
can be identified that distinguish tumorigenic from nontumorigenic cells, an important question is whether these cancer cell populations are distinguished by
epigenetic rather than genetic differences.

Shackleton et al. (2009) Cell 138:822-829
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Figure 2. Cancers Need Not Be Hierarchically Organized to Be Heterogeneous

CD133 expression distinguishes tumorigenic from nontumorigenic cancer cells in some brain tumors
and some colon cancers (Singh et al., 2004; O’Brien et al., 2007; Ricci-Vitiani et al., 2007). However, the
expression of CD133 (or other stem cell markers) by small subpopulations of cells in other cancers does
not necessarily mean that these cells are cancer stem cells. CD133 expression was heterogeneous in
melanomas from 6 of 12 patients (Quintana et al., 2008).

(A) Representative CD133 staining in one of these melanomas (positive staining was defined using an
isotype control).

(B) A reanalysis of the CD133- (blue) and CD133- (red) fractions after separation using magnetic beads.
(C) When these cells were transplanted into NOD/SCID IL2Ry™" mice, both the CD133- and CD133* frac-
tions of cells contained high frequencies of tumorigenic cells (D) (Quintana et al., 2008). The tumors that
arose from CD133- cells and from CD133- cells contained similar proportions of CD133- and CD133*
cells. This indicates that individual cancer cells can recapitulate the heterogeneity of the tumors from
which they derive, even when there is no evidence that the cancer follows a cancer stem cell model or
that tumorigenic cells are hierarchically organized.

Shackleton et al. (2009) Cell 138:822-829
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Table 1. Summary of Tumor Formation by Single Cells or by Limit Dilution Analyses of Melanoma Cells from Sixteen Stage I, lll, and IV
Patients

Tumors/Injections

Engraftment Rate (%)
AJCC Clinical Stage Cells Per Injection or Tumorigenic Cell
Tumor Origin Patient (Tumor Site) 1000 100 10 1 Frequency (95% ClI)
Single cell injections
Directly from patients 526 Il (regional LN metastasis) 10/32 31%
528 il (regional LN metastasis) 4/27 15%
530 Il (regional LN metastasis) 6/36 17%
534 il (regional LN metastasis) 15/30 50%
600 lll (regional subcutaneous 9/30 30%
metastasis)
Xenograft (up to 2 passages) 405 Il (regional LN metastasis) 6/15 40%
501 Il (regional LN metastasis) 7/27 26%
491 lll (regional subcutaneous 5/13 38%
metastasis)
ALL n=8 62/210 30%
Limit dilution analysis
Directly from patients 610 Il (cutaneous primary) 6/6 5/6 1/6 (1/2-1/15)
486 Il (cutaneous primary) 6/6 6/6 2/3 1/9 (1/2-1/39)
597 Il (cutaneous primary) 6/6 6/6 2/6 1/22 (1/8-1/62)
495 Il (cutaneous metastasis) 6/6 6/6 13 1/20 (1/5-1/76)
510 lll (regional LN metastasis) 6/6 3/3 >1/21
514 Il (regional LN metastasis) 6/6 6/6 6/6 >1/11
631 Il (regional LN metastasis) 6/6 3/3 >1/21
632 Il (regional LN metastasis) 6/6 6/6 >1/11
633 lll (regional LN metastasis) 6/6 6/6 >1/11
641 lll (regional LN metastasis) 6/6 4/6 1/9 (1/3-1/25)
608 IV (distant subcutaneous 6/6 6/6 >1/11
metastasis)
ALL n=11 24/24 66/66 44/54 1/6 (1/4-1/8)

AJCC: American Joint Committee on Cancer, Cl: confidence interval, LN: lymph node. Melanoma cells were mixed with Matrigel and injected into NSG
mice. Twenty-eight percent (44 of 155) of single cells obtained directly from patients formed tumors. AJCC is the clinical stage of the patient at the time
of melanoma removal. See also Figure S1.
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Figure 7. Many Phenotypically Distinct
Fractions of Melanoma Cells Can Recapitu-
late the Heterogeneity of the Tumors from
which They Derive

Expression of ABCBS (A), CD166 (B), A2B5 (C),
CD151 (D), CD54 (E), CD44 (F), CD9 (G), CD29
(H), N-Cadherin (I), CD271 (J), CD49e (K), CD49f
(L, L1-CAM (M), E-Cadherin (N), and c-kit (O)
in parent tumors (upper leff) compared with
expression in secondary tumors derived from
marker " and marker*™®" fractions (top right
and bottom right, respectively). Bottom left panels
show reanalyses of the sorted cell fractions used
to generate secondary tumors. See also Figure S3.
Every marker was tested in two to four separate
melanomas, except for CD44, CD49f, E-Cadherin,
and c-kit, which were tested in one.
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Figure 2 | The cycle of epithelial-cell plasticity. The diagram shows the cycle of events during which epithelial
cells are transformed into mesenchymal cells and vice versa. The different stages during EMT (epithelial-
mesenchymal transition) and the reverse process MET (mesenchymal-epithelial transition) are regulated by
effectors of EMT and MET, which influence each other. Important events during the progression of EMT and MET,
including the regulation of the tight junctions and the adherens junctions, are indicated. A number of markers
have been identified that are characteristic of either epithelial or mesenchymal cells and these markers are listed
in BOX 1 and BOX 2. E-cadherin, epithelial cadherin; ECM, extracellular matrix; FGFR2, fibroblast-growth-factor
receptor-2; FSP1, fibroblast-specific protein-1; MFs, microfilaments.

Thiery and Sleeman (2006). Nat. Rev. Mol. Cell Biol. 7:131-142
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Figure 3 | Overview of the molecular networks that regulate EMT. A selection of
the signalling pathways that are activated by regulators of EMT and a limited
representation of their crosstalk is illustrated. Activation of receptor tyrosine kinases
(RTKs) is known to induce EMT in several epithelial cell types and in vivo, but it is now
clear that the EMT process often requires co-activation of integrin receptors. The role
of transforming growth factor-f (TGFB) signalling in EMT is established for a limited
number of normal and transformed cell lines, whereas in vivo data has indicated a
mutual regulation of the TGFP and NOTCH pathways during EMT. There is now
increasing evidence that other signalling pathways could have an important role in
EMT, including G-protein-coupled receptors. Matrix metalloproteinases (MMPs) can
also trigger EMT through as-yet-undefined receptors. ETaR, endothelin-A receptor;
FAK, focal adhesion kinase; GSK3, glycogen-synthase kinase-3[; H/E(Spl), hairy/
enhancer of split; ILK, integrin-linked kinase; MAPK, mitogen-activated protein kinase;
NF-kB, nuclear factor-kB; PARS, partitioning-defective protein-6; PI3K, phosphatidyl-
inositol 3-kinase; PKB, protein kinase-B; ROS, reactive oxygen species; TAK1, TGFp-
activated kinase-1; TGFPR, TGFp receptor; WntR, Wnt receptor.
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Figure 1. The Epithelial-Mesenchymal Transition (EMT) Generates Cells with Properties of Stem Cells

(A) Phase-contrast images of HMLE cells expressing Snail, Twist, or the control vector, as well as HMLE cells treated with recombinant TGFB1 (2.5 ng/ml) for
12 days (bottom right).

(B) Relative expression of the mRNAs encoding E-cadherin, N-cadherin, vimentin, and fibronectin in HMLE cells induced to undergo EMT by the methods outlined
in (A), as determined by real-time RT-PCR. GAPDH mRNA was used to normalize the variability in template loading. The data are reported as mean = SEM.
(C) FACS analysis of cell-surface markers, CD44 and CD24, in the cells described in (A).

(D) In vitro quantification of mammosp heres formed by cells described in(A). The data are reported as the number of mammospheres formed/1000 seeded cells +
SEM, (* - p< 0.05; ™ - p < 0.001 compared to the control).



Table 2. Tumor Incidence of Transformed HMLESs Induced to
Undergo EMT by Ectopic Expression of Snail or Twist and Then
Injected into Host Mice in Limiting Dilutions

Tumors Incidence/Number of Injections

Cells Injected 1 x 108 1 x 10° 1 x 10* 1 x 10°
HMLE-Vector-Ras 2/6 3/9 0/9 0/9
HMLE-Snail-Ras  6/6 9/9 9/9 6/9

HMLE-Twist-Ras  6/6 9/9 9/9 7/9
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Figure 3. Stem-like CD44"¥"/CD24%¥ Cells Isolated from HMLE Cells Exhibit Attributes of Cells that Have Undergone an EMT
(A) Phase-contrast images (left) and immunofluorescence images of CD44™%/CD24" and CD44"°*/CD24™" cells stained using antibodies against E-cadherin,
fibronectin, or vimentin (right panels). (B) The expression levels of the mRNAs encoding E-cadherin, N-cadherin, vimentin, fibronectin, FOXC2, Slug, SIP1, Twist,
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Figure 5. EMT Induces Phenotypes Associated
with Cancer Stem Cells

(A) Phase-contrast images of NeuNT-Snail-ER, NeuNT-
Twist-ER, and NeuNT-control vector cells treated with
tamoxifen for a period of 10 days as well as images of
untreated cells.

(B) Western blot analysis of expression of HER2/neu,
E-cadherin, fibronectin, and vimentin proteins in the cells
shown in (A). B-actin was used as a loading control.

(C) Quantification of the mammospheres seeded by
NeuNT-Snail-ER, NeuNT-Twist-ER, or NeuNT-control
vector cells treated or not treated with tamoxifen for
10 days. The data are reported as mean = SD.

(D) Images of the colonies formed during soft agar culture
of NeuNT-Snail-ER, NeuNT-Twist-ER, and NeuNT-control
vector cells after being treated with tamoxifen for 10 days.
The soft agar assays were performed in the absence of
tamoxifen.

(E) Quantification of the soft agar colonies shown in (D).
The data arereported asmean + SD (™ -p<0.01; ™ -p <
0.001 compared to the control).
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Figure 1. Transit-amplifying cancer progenitor cells acquire stem-like phenotypes by dedifferentiating mechanisms. This schematic model depicts the
functional connections among microenvironmental signals, signal transduction pathways, and molecular circuitries, including transcriptional networks,
miRNAs, and epigenetic modifications that induce dedifferentiation of cancer progenitor cells into CSC phenotypes. Transcriptional networks involving Oct4,
Nanog, and other TFs act as key inducers of dedifferentiation mechanisms. eNOS, endothelial nitric oxide synthase; Hh, hedgehog; NO, nitric oxide; RTK,
receptor tyrosine kinase. Yunging Li and John Laterra
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Figure 3 | The epigenetic progenitor model in the context of a stem cell niche. Normal colonic epithelium (first panel)
includes a proliferative zone that contains stem cells (blue), which give rise to differentiated cells further up the crypt
(shades of brown represent differentiation stages) (a). The epigenetic progenitor model suggests that the stem cell
compartment is altered epigenetically (b), which can involve an expansion of the progenitor compartment or other
epigenetic changes in gene expression (pink), followed by genetic mutation (c, red). Subsequent evolution of the tumour
involves genetic and epigenetic plasticity; the latter allows expression of phenotypic features (invasion, metastasis and drug
resistance, the last of which is denoted by altered colour) that are inherent properties of the stem cell progenitor (d and e).
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Figure 2 | The epigenetic progenitor model of cancer. According to this model, cancer arises in three steps. First is
an epigenetic alteration of stem/progenitor cells within a given tissue, which is mediated by aberrant regulation of
tumour-progenitor genes (TPG). This alteration can be due to events within the stem cells themselves, the influence
of the stromal compartment, or environmental damage or injury. Second is a gatekeeper mutation (GKM) (tumour-
suppressor gene (TSG) in solid tumours, and rearrangement of oncogene (ONC) in leukaemia and lymphoma).
Although these GKMs are themselves monoclonal, the expanded or altered progenitor compartment increases the
risk of cancer when such a mutation occurs and the frequency of subsequent primary tumours (shown as separately
arising tumours). Third is genetic and epigenetic instability, which leads to increased tumour evolution. Note that
many of the properties of advanced tumours (invasion, metastasis and drug resistance) are inherent properties of the
progenitor cells that give rise to the primary tumour and do not require other mutations (highlighting the importance
of epigenetic factors in tumour progression).




Take Home Messages

The cancer stem cell hypothesis was developed as an alternative
explanation for heterogeneity within tumours with respect to
phenotypic or functional markers (e.g., morphology, cell surface
markers, proliferation rate and resistance to therapy)

The cell of origin and the cancer stem cell are not interchangeable.
In some cases, there is compelling evidence for normal multipotent
stem cells being the cell of origin.

The epigenetic state of the cell may be far more plastic than
previously recognized.

EMT is a normal developmental process that provides one pathway
for de-differentiation that may be exploited in solid tumours.

Clonal evolution and cancer stem cells are not mutually exclusive
hypotheses. The plasticity of the epigenetic state further obscures
distinctions between the two models to explain heterogeneity in
response to therapy.



