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Abstract

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options
and poor prognosis. There is an urgent need to identify and understand the key factors and signalling
pathways driving TNBC tumour progression, relapse, and treatment resistance. In this study, we report that
gene copy numbers and expression levels of nuclear factor IB (NFIB), a recently identified oncogene in small
cell lung cancer, are preferentially increased in TNBC compared to other breast cancer subtypes. Furthermore,
increased levels of NFIB are significantly associated with high tumour grade, poor prognosis, and reduced
chemotherapy response. Concurrent TP53 mutations and NFIB overexpression (z-scores > 0) were observed in
77.9% of TNBCs, in contrast to 28.5% in non-TNBCs. Depletion of NFIB in TP53-mutated TNBC cell lines
promotes cell death, cell cycle arrest, and enhances sensitivity to docetaxel, a first-line chemotherapeutic drug
in breast cancer treatment. Importantly, these alterations in growth properties were accompanied by induction
of CDKN1A, the gene encoding p21, a downstream effector of p53. We show that NFIB directly interacts
with the CDKN1A promoter in TNBC cells. Furthermore, knockdown of combined p21 and NFIB reverses the
docetaxel-induced cell growth inhibition observed upon NFIB knockdown, indicating that NFIB's effect on
chemotherapeutic drug response is mediated through p21. Our results indicate that NFIB is an important
TNBC factor that drives tumour cell growth and drug resistance, leading to poor clinical outcomes. Thus,
targeting NFIB in TP53-mutated TNBC may reverse oncogenic properties associated with mutant p53 by restoring

p21 activity.
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Introduction

Breast cancer is currently divided into four main
subtypes: luminal A, luminal B, HER2-enriched,
and basal-like (usually negative for ER, PR, and HER2,
referred to as triple-negative) [1]. Distinct therapies
have been developed for the management of selected
breast cancer molecular subtypes, resulting in greatly
improved patient survival [2]. However, triple-negative
breast cancer (TNBC) remains a challenge because it
does not respond to endocrine therapy or other approved
targeted agents. 7P53 mutations, found in the major-
ity of TNBCs [3.4], drive tumour progression via a
dual mechanism: loss-of-function (tumour suppression
activities) and gain-of-function (oncogenic activities)
[4,5]. As such, mutant p53 is a target of particular
interest for TNBC. However, targeting mutant p53 is
challenging because of its vast mutational complexity
and our still limited understanding of its functional
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networks. The identification of factors that circumvent
mutant p53 function is an alternative approach to the
direct targeting of mutant p53.

The Nuclear Factor I (NFI) family of transcription
factors (NFIA, NFIB, NFIC, NFIX) [6,7] plays impor-
tant roles in mammary gland development through
regulation of key mammary gland-specific genes [8].
NFIs have been implicated in both the promotion and
the suppression of human cancers, depending on can-
cer type and even subtype [9,10]. NFIB in particular
is widely expressed in the human body, with knock-
out of Nfib in mice revealing essential roles in lung
and brain development [9,11,12]. Recent studies have
shown that NFIB functions as a driver of metasta-
sis and tumour progression in small cell lung cancer
(SCLC) [13-15]. In particular, NFIB overexpression in
a pRB/p53-inactivated mouse model accelerates small
cell lung cancer progression, whereas reduced NFIB
expression in this model suppresses cell proliferation
and induces apoptosis, suggesting that NFIB cooperates
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with pRB/p53 inactivation to promote SCLC progres-
sion [16].

Previous reports indicate that NFIB gene copy num-
bers are increased in TNBC [17] and expression levels
are upregulated in ER-negative breast tumours and cell
lines [18,19]. In this study, we report that NFIB is pref-
erentially enriched in TNBC and represents a critical
factor regulating cell proliferation/survival by direct
suppression of p21 transcription, a key downstream
effector of p53. Thus, targeting NFIB may mitigate the
effects of TP53 mutations through induction of p21
expression.

Materials and methods

Cell lines and culture conditions

Human breast cancer cell lines were purchased from
the American Type Culture Collection (ATCC, Man-
assas, VA, USA). For chemotherapy drug sensitivity
assays, cells were seeded in 24-well plates and cultured
for 48 h, followed by 24 h treatment with docetaxel at the
specified concentrations in the absence of antibiotics
in the culture medium.

Patients and tissue samples

Primary breast cancer samples from 176 treatment-naive
patients were used for gene expression microarray
analysis as previously described [20]. Patient mate-
rial and clinical information were collected under
Research FEthics Board Protocol ETH-02-86-17
(Alberta Cancer Research Ethics Committee) in
accordance with the Code of Ethics of the World
Medical Association. Patients received standardised
guideline-based chemotherapy [anthracycline for
high-risk node-negative disease and anthracycline
plus taxane (docetaxel) for node-positive disease] and
hormone therapy.

Gene profiling data and RT-PCR

Total RNA isolation from frozen primary breast tumour
biopsies, gene microarray analysis, and data processing
were as previously described [20]. The microarray data
used in this article can be accessed under GEO accession
number GSE22820 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi). Gene copy numbers or/and mRNA levels
in PAMS50 molecular subtypes were analysed based on a
TCGA [21] or METABRIC [22] gene profiling dataset
obtained from cBioportal. The nucleotide sequences of
the primers used for RT-PCR are listed in the supple-
mentary material, Table S1. Semi-quantitative RT-PCR
conditions were as previously described [23]. Quan-
titative PCR amplification was performed using Eva-
Green 2X qPCR MasterMix-ROX (abm Inc, Richmond,
BC, Canada).
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siRNA transfection, overexpression, and cell
proliferation assays

MDA-MB-435, HCC1806, and BT-20 cells were trans-
fected with 10 nM scrambled (control) or gene-specific
(NFIB or CDKNIA) siRNAs (ThermoFisher, Waltham,
MA, USA; sequences are listed in the supplementary
material, Table S1) using RNAIMAX transfection
reagent (ThermoFisher). For NFIB overexpres-
sion, BT-474 cells were transfected with either
pcDNA3.1 empty vector or pcDNA3.1-HA-NFIB
using polyethyleneimine. To measure cell proliferation,
transfected cells (30000 cells per well in triplicate for
each condition) were counted using a Coulter Particle
and Size Analyzer (Beckman Coulter, Mississauga,
Ontario, Canada).

Western blot analysis

Forty micrograms of whole cell lysates was separated
by SDS-PAGE and transferred to nitrocellulose mem-
branes. Blots were immunostained with anti-NFIB
(Cat. No. ab11989; 1:1000; Abcam, Cambridge, UK),
anti-p21 (Cat. No. 60214-1-1g; 1:2000; Proteintech,
Rosemont, IL, USA), anti-cleaved caspase 3 (Cat.
No. 9664; 1:1000; Cell Signaling, Whitby, Ontario,
Canada), anti-FABP7 (1:1000) [24] or anti-fB-actin
(Cat. No. A3854; 1:100 000; Sigma-Aldrich, St
Louis, MO, USA) antibodies. Primary antibodies
were detected with horseradish peroxidase-conjugated
secondary antibodies (Cat. No. 111-035-003; 1:25
000; Jackson ImmunoResearch Laboratories, West
Grove, PA, USA) using ECL (p-actin; GE Health-
care, Chicago, IL, USA), ECL prime (cleaved caspase
3; GE Healthcare) or Immobilon (NFIB, p21, and
FABP7) (MilliporeSigma, Burlington, MA, USA)
detection systems.

Immunohistochemical assay

Formalin-fixed, paraffin-embedded TNBC (four
tumours) and non-TNBC (four tumours) tissue sections
were immunostained with a validated anti-NFIB anti-
body (ThermoFisher; 1:800). The signal was detected
using EnVision+ anti-rabbit secondary system (Agilent,
Santa Clara, CA, USA).

Gel shift assays

Gel shifts were carried out using an oligonucleotide
spanning an NFI binding element located upstream
of the human CDKNIA gene [25] as previously
described [26]. Briefly, 1 pg of nuclear protein extract
was incubated with the [a-3*P]dCTP-labelled probe.
For supershift assays, 1 pl of anti-NFI (Dr Naoko
Tanese) [27], 1 pl of anti-NFIB (ThermoFisher), or
I pl of anti-TFAP2A (3BS5; Developmental Studies
Hybridoma Bank, Iowa City, IA, USA) antibodies was
added to the binding reaction 10 min after addition of
the labelled probe and incubated at room temperature
for 30 min.
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Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was carried out
as described previously [28]. Immunoprecipitation was
carried out in 0.1% SDS sonication buffer with either
rabbit IgG or anti-NFIB antibody (Abcam). ChIP DNA
was purified and amplified using Phusion® Taq poly-
merase and primers flanking the NFI element of the
CDKNIA promoter (supplementary material, Table S1).
PCR amplification of the human GAPDH promoter
region served as a negative control.

Statistical analysis

Cell culture experiments involving manipulation
of NFIB expression were carried out three or four
times, each time in triplicate. Chromatin immunopre-
cipitations were carried out three times and gel shift
experiments two or three times. Selection of the human
breast cancer patient cohort was as previously described
[29]. All statistical analyses were performed using Med-
Calc version 12.4.0.0 (MedCalc, MedCalc Software,
Ostend, Belgium). One-way ANOVA (when comparing
more than two groups) or two-tailed Student’s #-test
(when comparing two groups) was employed for sta-
tistical significance testing. For multiple comparisons,
controls were normalised to 1 (RT-qPCR levels) or
100% (drug-induced cell growth inhibition). Pearson’s
correlation analysis was used to determine correlation
coefficients between NFIB and CDKNAI mRNA levels.
A chi-square test was used to estimate statistical sig-
nificance between categorical frequencies. A log-rank
test was used to compare Kaplan—Meier overall and
recurrence-free survival probabilities between primary
breast cancer populations defined by NFIB expression
levels (stratified as ‘low’ or ‘high’ using receiver oper-
ating characteristic analysis of our 176-patient gene
microarray dataset or the mRNA z-scores from the
c-Bioportal datasets) or chemotherapy intervention.

Results

Gene copy numbers and NFIB expression are
preferentially elevated in TNBC tumours

To examine the expression patterns of NFI genes
in different molecular subtypes of breast cancer, we
first analysed the mRNA levels of each NFI gene
(NFIA, NFIB, NFIC, NFIX) in a TCGA gene pro-
filing dataset [21]. Of all four NFI genes analysed,
only NFIB showed upregulation (z-scores>0) in all
breast cancer PAMS50 molecular subtypes, with the
highest expression levels (z-scores =3.23) in basal-like
tumours (Figure 1A—D). In comparison, the z-scores
for NFIA, NFIC, and NFIX in basal-like tumours were
—0.76, —0.77, and 0.68, respectively (Figure 1A-D).
As basal-like breast tumours are mainly triple-negative
cancers, we then compared the z-scores for NFIB in
TNBC versus non-TNBC tumours and observed a
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significant difference between them (3.12 versus 1.52,
p<0.001), indicating preferential overexpression of
NFIB in TNBC (Figure 1E). To verify the findings
obtained from the TCGA dataset [21], we also analysed
NFIB mRNA levels in a gene profiling dataset [Cross
Cancer Institute (CCI)] generated from 176 breast can-
cer patients [29]. NFIB mRNA levels were more than
three times higher in TNBC than in non-TNBC (2.00
versus 0.60 in geometric means; p <0.001) (Figure 1F
and supplementary material, Table S2).

We further examined the relative frequency of TP53
mutations and NFIB overexpression in TNBC using the
TCGA dataset. TP53 was mutated in 76.5 and 26.6%
of TNBCs and non-TNBC:s, respectively, whereas NFIB
was overexpressed (z-scores > 0) in 88.8 and 44.6% of
TNBCs and non-TNBCs, respectively. The frequency
of cancers with both 7P53 mutations and NFIB over-
expression was 77.9% in TNBC, but only 28.5% in
non-TNBC (p < 0.0001) (Figure 1G), indicating concur-
rent TP53 mutation and NFIB overexpression in TNBC.
We further observed 2.5- to 17.5-fold increases in NFIB
mRNA levels in tissues of TNBC origin (n=15) com-
pared with non-TNBC (n=15) based on RT-qPCR anal-
ysis (Figure 1H).

As NFIB gene amplification has been previously
reported in small cell lung cancer cells [14], we then
examined NFIB gene copy numbers in the TCGA breast
cancer cohort [21] based on triple-negative status. We
found NFIB gene copy gains or amplification in 34%
of TNBCs, but in only 8% of non-TNBCs (Figure 11).
We also observed a significant correlation between NFIB
gene copy numbers and mRNA levels in TNBC, but
not in non-TNBC (Figure 1J), suggesting that increased
gene copy numbers contribute to NFIB overexpression
in TNBC.

To examine NFIB expression at the protein level,
we immunostained eight tumour tissue sections
(four TNBC and four non-TNBC) obtained from
our 176-patient breast cancer cohort with an NFIB
antibody showing no cross-reactivity with other NFI
proteins (Figure 2A). NFIB immunoreactivity was
observed in all four TNBC tissues, with three of them
(MT1337, MT861, MT50) showing strong staining
(Figure 2B, upper panel). In contrast, NFIB was not
detected in two non-TNBC tissues (MT278, MT330),
with weak staining observed in the remaining two
non-TNBCs (Figure 2B, lower panel). Both uniform
(GT154, MT1337, MT50) and heterogeneous (MT861)
distributions of NFIB were observed in positive tissues.

Elevated NFIB RNA levels are associated with high
histological tumour grade and poor patient
prognosis

Analysis of our 176-patient breast cancer cohort [29]
revealed a significant increase in NFIB RNA lev-
els in high nuclear (p=0.001), mitotic (p <0.0001),
architectural (p=0.038), and overall (p<0.0001)
grade tumours compared with low-grade tumours
(supplementary material, Figure S1 and Table S2).
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Figure 1. Elevated NFIB gene copy numbers and expression levels in basal-like breast cancer or TNBC. (A-D) mRNA levels of NFIA (A),
NFIB (B), NFIC (C), and NFIX (D) in PAM50 molecular subtypes of human breast cancer. NFIB is upregulated in all breast cancer subtypes
(z-scores > 0) and is preferentially expressed in basal-like breast cancer (z-scores = 3.2) compared with the other subtypes based on gene
profiling data from TCGA [21]. (E, F) NFIB mRNA levels are significantly higher in TNBC (TN) than in non-TNBC (non-TN) based on gene
profiling data from both the TCGA cohort (n=525) (E) and the Cross Cancer Institute (CCI) cohort (n=176) (F) (GEO accession number:
GSE22820). (G) Concurrent TP53 mutations and NFIB overexpression occur in a majority (77.9%) of TNBCs but in only 28.5% of non-TN
breast cancers. (H) RT-qPCR shows increased NFIB mRNA levels in primary TNBC tissues. (I) Increased NFIB gene copy numbers are observed
in TNBC. (J) NFIB gene copy numbers are positively correlated with NFIB mRNA levels in TNBC but not in non-TNBC. n, sample size; HR,
hazard ratio; TNBC, triple-negative breast cancer; non-TN, non-triple-negative breast cancer. *p < 0.05; **p < 0.01. The z-scores of mRNA
levels (in units of standard deviation from the mean of a reference population) shown in A-E, G, J, and the NFIB gene copy data shown in |
and J, were obtained from TCGA datasets [21]. The mRNA levels shown in F are log-transformed gene microarray signal intensity from our
gene microarray dataset (GSE22820, n= 176). The cut-off point (1.7239) for the NFIB mRNA levels in G was decided by receiver operating
characteristic (ROC) analysis.

Significantly increased NFIB RNA levels were also
observed in tumours with high Ki-67 immunoreactiv-
ity (positivity > 15%), indicative of cell proliferation
[30] (supplementary material, Figure S1), suggest-
ing a possible link between NFIB and tumour cell
growth. Kaplan—Meier patient survival curves gener-
ated for NFIB-high and NFIB-low patients indicated
that elevated NFIB levels were significantly associ-
ated with both lower overall (HR =2.46, p =0.0023)
and recurrence-free (HR=1.72, p=0.0157) survival
probabilities (Figure 2C). Next, we performed sur-
vival analysis on basal-type (n=199, mainly TNBC)

Copyright © 2018 Pathological Society of Great Britain and Ireland.
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and luminal (non-TNBC) patients (n=1445) using
the METABRIC dataset [22]. We observed a strongly
unfavourable (HR=5.59, p=0.006) and a slightly
favourable (HR =0.80, p=0.001) prognostic associa-
tion with NFIB levels in basal and luminal populations,
respectively (Figure 2D), indicating that NFIB may
represent a TNBC-specific adverse factor.

Depletion of NFIB in TNBC cells inhibits cell

proliferation and induces p21 and cleaved caspase 3
NFIB promotes cell proliferation and senescence
and inhibits apoptosis in small cell lung cancer cells
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Figure 2. NFIB in breast tumour tissues and prognostic significance of NFIB expression in breast cancer patient cohorts. (A) Western
blots showing immunoreactivity of the NFIB antibody to HA-tagged NFIB-transfected U251 cells, but not to HA-tagged NFIA-, NFIC-,
and NFIX-transfected U251 cells. Cells were harvested 48 h after transfection. (B) Immunohistochemical analysis of four TNBCs (GT154,
MT1337, MT861, MT50) (upper panel) and four non-TNBCs (MT278, MT330, MT689, MT998) (lower panel). Tissues were counterstained with
haematoxylin (blue). A strong positive signal (brown staining) is observed in TNBC but not in non-TNBC tissues. All eight tumour tissues
were from the 176-patient breast cancer cohort. (C) Kaplan-Meier log-rank test shows that high NFIB mRNA levels were significantly
associated with reduced overall and recurrence-free patient survival (n=176; GEO microarray data accession number: GSE22820). (D)
Survival curves generated in subpopulations with basal-type or luminal tumours from the METABRIC breast cancer cohort [22]. The cut-off
points for NFIB mRNA levels (in z-scores) were determined by ROC analysis using survival status as a classification factor (C, 1.7239) or
z-scores (D, 0).

[14]. In primary breast cancers, we observed a signif-
icant positive correlation between NFIB expression,
mitotic tumour grade, and Ki-67 immunoreactivity
(supplementary material, Figure S1). To address the
possibility that NFIB confers survival and proliferation
potential to TNBC cells, we depleted NFIB in three

Copyright © 2018 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

TP53-mutated TNBC cell lines that naturally express
NFIB (MDA-MB-435, HCC1806, and BT-20) (sup-
plementary material, Figure S2) using two different
siRNAs. RT-qPCR analysis showed 78-96% reduc-
tions in NFIB transcript levels after siRNA transfection
in different cell lines (Figure 3A—C). Depletion of NFIB

J Pathol 2018
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Figure 3. NFIB depletion in TP53-mutated TNBC cell lines suppresses cell proliferation and induces p21 activity. (A-C) Depletion of NFIB
mRNA in MDA-MB-435 (A), HCC1806 (B), and BT-20 (C) was verified by RT-qPCR. Reduced NFIB protein levels in siNFIB-transfected TNBC
cells was verified by western blotting (A-C, insets). (D-1) Cell proliferation was significantly inhibited by NFIB depletion in TNBC cell lines
MDA-MB-435 (D, E), HCC1806 (F, G), and BT-20 (H, 1). (J, K) Flow cytometry analysis showed significant decreases in the percentage of
cells in G1 phase, with accompanying increases in the percentage of cells in the S/G2 phases, upon NFIB knockdown in MDA-MB-435 and
HCC1806 cells. Cells were harvested when they reached ~80% confluence. (L) Western blot analysis showing concurrent induction of p21
and cleaved caspase 3 in MDA-MB-435 and HCC1806 after NFIB depletion. Cells for RT-PCR and western blotting were harvested 48 h
after siRNA transfection. *p < 0.05; **p < 0.01.

protein was verified by western blotting (Figure 3A—C,  and BT-20 cells (Figure 3D,F,H). NFIB-depleted cells
insets). Cell proliferation assays showed a more than = were larger and had a flattened shape compared with
50% reduction in cell numbers after NFIB depletion for ~ control cells. Flow cytometry analysis of MDA-MB-435
all three cell lines 4 days after plating (Figure 3E,G,I). and HCC1806 showed increased proportions of cells in
In addition, we observed changes in cell morphology  the S/G2 phases of the cell cycle upon NFIB depletion
upon NFIB knockdown, particularly in MDA-MB-435  suggesting a role for NFIB in cell cycle progression
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through S/G2 (Figure 3J,K). No significant changes
in cell cycle distribution were observed upon NFIB
depletion in BT-20 cells (data not shown).

p21 is an important regulator of cell proliferation and
survival in TNBC cells under various stimulatory path-
ways [31-33]. We therefore examined p21 protein lev-
els upon NFIB depletion. p21 was significantly induced
in MDA-MB-435 cells and HCC1806 cells upon NFIB
depletion (Figure 3L). In contrast, p53 levels were not
affected by NFIB knockdown (data not shown), suggest-
ing that the observed increase in p21 is independent of
pS3 which is mutated in MDA-MB-435 and HCC1806
[34]. We also observed induction of the cell apopto-
sis marker cleaved caspase 3 [35] upon NFIB deple-
tion in both MDA-MB-435 and HCC1806 (Figure 3L),
indicating that apoptosis contributes to the cell growth
inhibition observed in NFIB knockdown cells. As we
show later (Figure 6), p21 levels are naturally higher
in p53-mutated BT-20 than in either MDA-MB-435 or
HCC1806, with NFIB knockdown resulting in only a
slight increase in p21 levels.

NFIB attenuates chemotherapy sensitivity

TNBC patients show variability in their response
to chemotherapy, underlying the need to understand
the molecular mechanisms driving chemotherapeutic
response. NFIB overexpression has previously been
associated with increased resistance to chemother-
apy drugs in cancer cell lines [36]. We therefore
tested the effect of docetaxel (DOC), one of the
most active chemotherapy agents used in the treat-
ment of invasive breast cancer, on cell proliferation
in NFIB-depleted TNBC cell lines. Control and
NFIB-depleted MDA-MB-435 and HCC1806 cells
all showed DOC-induced inhibition of cell proliferation
in a dose-dependent manner; however, NFIB-depleted
cells were significantly more sensitive to DOC treatment
(Figure 4A,B). BT-20 cells transfected with scrambled
siRNA (control) exhibited no growth inhibition in the
presence of DOC, whereas NFIB-depleted cells showed
22% and ~40% growth inhibition when treated with
25nM (p<0.05) and 50nM (p<0.01) DOC, respec-
tively (Figure 4C). Interestingly, overexpression of
NFIB in BT-474, a TP53-mutated luminal cell line,
did not alter cell response to docetaxel (supplementary
material, Figure S3). FABP7 and p21 levels were not
affected by NFIB overexpression in BT-474. The lack
of an effect in this cell line could be due to the fact
that the cells already express endogenous NFIB or may
reflect a molecular subtype-dependent role for NFIB in
breast cancer.

We used our 176-patient cohort to further exam-
ine whether the correlation between NFIB status and
chemosensitivity might also apply to breast cancer
patients. Patients who received chemotherapy (n=50:
13 ER-negative; 37 ER-positive) had improved prog-
nosis (HR =2.19, p =0.003) compared with those who
did not receive chemotherapy (n = 126: 51 ER-negative;
75 ER-positive) (Figure 4D). Notably, this effect

Copyright © 2018 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

was magnified in the subpopulation of patients with
low levels of NFIB (n=62) (HR=28.81, p<0.0001)
(Figure 4E), with the effect of chemotherapy becoming
insignificant (HR = 1.6, p =0.12) in the population with
high levels of NFIB (n=114) (Figure 4F).

Next, we examined the effect of NFIB depletion and
DOC treatment on p53, p21, caspase 3, and FABP7
protein levels in MDA-MB-435 and HCC1806 cells. As
also observed in Figure 3L, p21 and cleaved caspase 3
were markedly induced upon NFIB depletion, whereas
the levels of FABP7, a known NFI target [27,37]
and a TNBC marker [26], were reduced upon NFIB
depletion (Figure 4G,H). DOC treatment increased
the levels of p21 (control) and caspase 3 (control and
NFIB-depleted), but had no effect on FABP7. There was
no significant change in mutant p53 levels upon either
NFIB knockdown or DOC treatment. These findings
suggest that elevated NFIB levels in TNBC may cause
chemotherapy resistance by modulating cell survival
pathways.

NFIB reqgulates CDKN1A transcription in TNBC cells

As p21, encoded by the CDKNIA gene, was induced in
NFIB-depleted TNBC cells independently of p53, we
speculated that CDKNIA transcription may be directly
suppressed by NFIB in TNBC cells. We therefore used
gel shift and supershift assays to examine the binding of
NFIB to a putative NFI regulatory element [25] in the
CDKNIA promoter (Figure 5A). Nuclear protein—DNA
probe complexes (labelled NFI +P) were observed in
all three cell lines examined (MDA-MB-435, HCC1806,
and BT-20) (lanes 2 in Figure 5B—D). Addition of 50x
and 100X cold probe (lanes 3 and 4 in Figure 5B—D) or
NFI consensus binding sequence DNA (lanes 4 and 5 in
Figure 5F) effectively competed with the labelled probe,
with little to no signal detected, indicating probe-specific
interaction. Addition of either a pan-specific NFI anti-
body or NFIB antibody, but not TFAP2A antibody, to
the reaction resulted in a supershifted band (SC), demon-
strating the presence of NFIB in the binding complex
(Figure 5B-D,F).

Next, we carried out a gel shift assay using nuclear
lysates prepared from control and NFIB-depleted
MDA-MB-435, HCC1806, and BT-20 cells.
The NFI-probe binding complex was absent
(MDA-MB-435) or markedly reduced (HCC1806
and BT-20) in NFIB-depleted cells (Figure 5E), sug-
gesting a specific interaction between NFIB and
the region of the CDKNIA promoter harbouring the
NFI binding site. RT-qPCR further showed a 2-5X
(MDA-MB-435), 4.5x (HCC1806) or 1.5-2x (BT-20)
increase in CDKNIA mRNA levels in NFIB-depleted
cells compared with control cells (Figure 5G), providing
additional evidence for suppression of CDKNIA tran-
scription by NFIB. Finally, based on gene expression
microarray analysis of our 176-patient breast cancer
cohort, we observed a significant negative correlation
(p=0.02) between NFIB and CDKNIA RNA levels in
TNBC, but not in non-TNBC (p =0.30) (Figure 5H).
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To demonstrate in vivo occupancy of NFIB at the
CDKNIA promoter, we carried out chromatin immuno-
precipitation (ChIP) with anti-NFIB antibody using
MDA-MB-435 breast cancer cells. PCR primers flank-
ing the putative NFI binding element in the CDKNIA
promoter (Figure 51, upper panel) generated a product
of the correct size in the anti-NFIB antibody lane, with a
barely detectable band in the control IgG lane (Figure 51,
lower panel). The observed preferential binding of NFIB
to the CDKNIA promoter sequences containing the

NFI element suggests a direct regulatory relationship
between NFIB and p21 in TNBC.

p21 is required for cell growth inhibition

and enhanced chemotoxicity in NFIB-depleted
TNBC cells

To further investigate whether p21 is a direct down-

stream effector of NFIB, we transfected MDA-MB-435,
HCC1806, and BT-20 cells with siRNAs targeting

Copyright © 2018 Pathological Society of Great Britain and Ireland.
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either NFIB or both NFIB and p2l. As expected, = NFIB/p21-co-depleted BT-20, likely due to the small

p21 was markedly upregulated upon NFIB depletion
in both MDA-MB-435 and HCC1806 cells, but was
not increased in BT-20 (Figure 6A). Reversal of p21
upregulation was observed in NFIB/p21-co-depleted
cells in all three cell lines (Figure 6A). Importantly,
the cell growth inhibition observed with NFIB deple-
tion was significantly (albeit partially) reversed upon
co-depletion of NFIB and p21, with or without doc-
etaxel treatment in MDA-MB-435 and HCC1806
cells (Figure 6B,D). Inhibition of cell growth upon
NFIB depletion with reversal upon co-depletion of
NFIB and p21 was also observed using a second
siRNA targeting a different region of the p2l tran-
script (p21b) (Figure 6C,D). However, there was no
reversal of DOC-induced cell growth inhibition in

Copyright © 2018 Pathological Society of Great Britain and Ireland.
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induction in p21 expression observed upon NFIB knock-
down in these cells (Figure 6A and data not shown).
These results point to a direct causative link between
NFIB depletion, p21 induction, and DOC-induced
growth inhibition.

Discussion

Our study indicates that NFIB is a driver of cell pro-
liferation/survival and treatment resistance in TNBC
cells through direct suppression of a key target gene,
CDKNAI. The tumour-promoting effect of NFIB is
further evidenced by the significant association of its
elevated expression levels with high histological grade,
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Ki-67 immunoreactivity, chemoresistance, and poor
patient prognosis in breast cancer patient cohorts. We
propose that loss of p21 due to prevalent 7P53 muta-
tions and NFIB overexpression in TNBC is an important
mechanism underlying TNBC cell growth, chemore-
sistance, and poor clinical outcomes (supplementary
material, Figure S4).

NFIs play different roles depending on cellular or tis-
sue context. For example, NFIs that promote differen-
tiation during development can also promote survival
of stem cells in adults [38]. In cancer, NFIs can have
oncogenic roles (as demonstrated here) or tumour sup-
pressor roles (for recent reviews, see refs 9 and 10).
Paradoxical roles of NFIs may be attributed to cellu-
lar/molecular context, structural variations, mutations,
and post-translational modifications [10].

The function of NFIs in breast cancer remains poorly
understood. Studies on the role of NFIB in breast can-
cer have primarily focused on gene fusion events [9,10].
For example, NFIB—MYB gene fusion typically occurs
in breast adenoid cystic carcinoma (AdCC), a rare type
of TNBC. NFIB—MYB fusion leads to elevated levels of
functional MYB and disruption of NFIB function. Inter-
estingly, in contrast to the majority of TNBCs which
express wild-type NFIB and have a poor prognosis,
AdCCs are typically low-grade cancers with indolent
clinical behaviour and excellent prognosis [39], in keep-
ing with NFIB being an adverse factor in TNBC. The
only other functional investigation of NFIB in breast
cancer was carried out in the HER2-overexpressing cell
line HCC1954. In agreement with our findings, NFIB
knockdown in this cell line resulted in decreased prolif-
eration and increased apoptosis with a greater percent-
age of cells in S/G2 phases of the cell cycle compared
with control cells [18].

A well-known mechanism of p53 action is through
regulation of its downstream target CDKNIA, which
encodes p21. While inhibition of p21 expression is usu-
ally associated with loss of p53 activity, upregulation
of transcriptional suppressors of p21 can also play an
important role in the disruption of p21 function [40].
p21 serves as a downstream effector of other tumour sup-
pressors, such as BRCA1, TGF-p, and Wnt-1 [40], sug-
gesting that it has anti-tumour activities independent of
p53. In keeping with the idea that restoring p21 function
in TP53-mutated tumours could be of significant ben-
efit to a subset of cancer patients, clinical cohort anal-
yses combining p21 expression and p53 status indicate
that p21-positive and pS3-negative patients have a more
favourable prognosis than p21 and p53-double-positive
or p21-negative and p53-positive patients in small cell
lung cancer (SCLC) [41] and ovarian cancer [42]. As
such, identification and targeting critical CDKNIA tran-
scriptional suppressors may restore p21 function and
overcome the deleterious effects of TP53 mutations,
which occur in 60—-88% of TNBCs or basal-like breast
cancers [4]. Our findings suggest that NFIB represents
such a negative regulator of p21 and is therefore a poten-
tial therapeutic target for TNBC.

Copyright © 2018 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

Taxanes and anthracyclines are important chemother-
apeutic agents for TNBC patients, with different effica-
cies observed in subgroups of TNBC [43]. In particular,
breast cancer patients are prone to developing resistance
to docetaxel, a potent taxane widely used in the clinic
[44]. We have shown that NFIB contributes to resistance
to docetaxel in TNBC cells, with significant enhance-
ment of cell response to docetaxel observed upon NFIB
depletion in all three TNBC cell lines tested. In line
with these findings, a previous study designed to identify
genomic predictors of response to taxane—anthracycline
chemotherapy identified NFIB as a predictor gene for
residual disease in ER-negative breast cancer [45]. The
effect of NFIB depletion on docetaxel response was
accompanied by p21 induction, with p21 being criti-
cal to docetaxel-induced growth inhibition. Thus, our
results indicate that NFIB depletion sensitises TNBC
cancer cells to chemotherapeutic agents such as doc-
etaxel in a p53-independent, but p21-dependent, manner.
Notably, we found that low levels of NFIB, but not high
levels of NFIB, were associated with increased survival
in patients treated with chemotherapy compared with
patients who did not receive chemotherapy. It will be
important to pursue this finding using a larger cohort of
patients to specifically address the predictive power of
NFIB in breast cancer chemotherapy.

While there is accumulating evidence supporting
apoptotic and chemotherapy-sensitising roles for p21
that are independent of p53 [40,46], the mechanism
underlying p21-mediated docetaxel cytotoxicity in our
TNBC cells remains unclear. In light of our observation
that cleaved caspase 3 is induced upon NFIB depletion
in TNBC, we suggest that p21 enhances apoptosis in
TNBC cells treated with docetaxel by directly or indi-
rectly inducing pro-apoptotic factors such as cleaved
caspase 3. In keeping with this idea, ectopic expression
of p21, along with enhanced chemosensitivity and
increased apoptosis (as measured by cleaved caspase
3), has been reported in other cancer cell lines [46].

In summary, our study suggests that NFIB drives
cell survival and drug resistance in TNBC, leading to
aggressive growth, tumour progression, and poor clini-
cal outcomes. As NFIB depletion restores p21 function
in TP53-mutated TNBC cells, targeting NFIB represents
a potential therapeutic intervention for TNBC patients.
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