Selected Publications

1. Schaar, B.T., G.K.T. Chan, P. Maddox, E.D. Salmon, and T.J. Yen. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139:1373–1382, 1997. PDF

2. Jablonski, S.A., G.K.T. Chan, C.A. Cooke, W.C. Earnshaw, and T.J. Yen. . The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma 107:386–396, 1998. PDF

3. Gately, D.P., J.C. Hittle, G.K.T. Chan, and T.J. Yen. Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity. Mol. Biol. Cell 9:2361–2374, 1998. PDF

4. Chan, G.K.T., S.A. Jablonski, V. Sudakin, J.C. Hittle, and T.J. Yen. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the Cyclosome/APC. J. Cell Biol. 146:941-54, 1999. PDF

5. Chan, G.K.T., S.A. Jablonski, D.A. Starr, M.L. Goldberg, and T.J. Yen. Human ZW10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nature Cell Biol. 2:944-947, 2000. PDF

6. Campbell, M.S., G.K.T. Chan, and T.J. Yen. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci. 114:953-963, 2001. PDF

7. Sudakin, V., G.K.T. Chan, and T.J. Yen. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154:925-836, 2001. PDF

8. McEwen, B.F., G.K.T. Chan, B. Zubrowski, M.S. Savoian, M.T. Sauer, and T.J. Yen. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12:2776-89, 2001.
PDF

9. Marmorstein, L.Y., A. Kinev, G.K.T. Chan, D.A. Bochar, H. Beniya, J.A. Epstein, T.J. Yen, S.A. Aaronson, and R. Shiekhattar. 2001. A Human BRCA2 Complex Containing a Structural DNA-binding Component Influences Cell Cycle Progression. Cell 104(2):247-257. PDF


10. Chan, G.K.T. and T.J. Yen. The mitotic checkpoint: a signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit. In Progress in Cell Cycle Research (editors L. Meijer, A. Jezequel and M. Roberge) Volume 5, Editions Cloitre, Brittany, pp.431-439, 2003. PDF

11. Liu, S.T.*, G.K.T. Chan*, J.C. Hittle, E. Lees, T.J. Yen. Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. *co-first authors Mol. Biol. Cell 14:1638-51, 2003. PDF

12. Maxwell C.A.., J.J. Keats, M. Crainie, Xuejun Sun, T.J. Yen, E. Shibuya, M. Hendzel, G.K.T. Chan, and L.M. Pilarski. RHAMM is a centrosomal protein that interacts with dynein and stabilizes spindle poles. Mol Biol Cell 14:2262-76, 2003. PDF
 
13. Yun C., H. Cho, S.J. Kim, J.H. Lee, S.Y. Park, G.K. Chan, Hyeseong Cho. Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein via the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway. Molecular Cancer Research 2(3):159-169, 2004. PDF

14. Lee, E.A., M. K. Keutmann, M. Dowling, E. Harris, G.K. Chan, and G.D. Kao. 2004. Inactivation of the Mitotic Checkpoint Targets Human Cancer Cells to Killing by Microtubule-disrupting Drugs. Molecular Cancer Therapeutics 3(6):661-9, 2004. PDF

15. Bertos N.R., B. Gilquin, G.K. Chan, T.J. Yen, S. Khochbin, X.J. Yang. Role of the tetradecapeptide-repeat domain of human histone deacetylase 6 in cytoplasmic retention. J Biol Chem. 279(46):48246-54, 2004. PDF

16. Chan, G.K.T., Liu, S.T., and T.J. Yen. Kinetochore Structure and Function. Trends in Cell Biology.5(11):589-98, 2005. PDF

17. Vos L.J., Famulski J.K. & G.K. Chan. 2006. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochemistry and Cell Biology 84(4):619–616. PDF

18. Heit R., D.A. Underhill, G.K. Chan, and M.J. Hendzel. 2006. Epigenetic Regulation of Centromere Formation and Kinetochore Function. Biochemistry and Cell Biology 84:605–61. PDF

19. Huang H., Feng J., Famulski J., Rattner J.B., Liu S.T., Kao G.D., Muschel R., Chan G.K.T., T.J. Yen. 2006. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J. Cell Biology 17:413-424. PDF

20. Famulski J.K., G.K. Chan. 2007. Aurora B kinase-dependent recruitment of hZW10 and hROD to tension-less kinetochores. Current Biology 17, 2143–2149. PDF

21. Famulski J.K., Vos L.J., Sun X.J. and G.K. Chan. 2008. Stable hZW10 residency at kinetochores, mediated through hZwint-1 interaction, is essential for mitotic checkpoint function. J of Cell Biology,180:507-520. PDF

22. Kim S., S.Y. Park, H. Yong, J.K. Famulski, S. Chae, J.-H. Lee, C.-M. Kang, H. Saya, G.K. Chan* and H. Cho*. 2008. HBV X protein targets hBubR1, which induces dysregulation of the mitotic checkpoint. *co-corresponding authors Oncogene, 27(24):3457-64. PDF

23. Gieni R., G.K. Chan and M.J. Hendzel. 2008. Epigenetics regulate centromere formation and kinetochore function. Journal of Cellular Biochemistry, 104(6):2027-39.PDF

24. Matsumoto T., P. Schiller, L.C. Dieterich, F. Bahram, Y. Iribe, U. Hellman, C. Wikner, G. Chan, L. Claesson-Welsh, A. Dimberg. 2008. Ninein is expressed in angiogenic tip-cells and regulates tubular morphogenesis of endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12):2123-30.PDF

25. Whyte J., J.R. Bader, S. Tauhata, M. Raycroft, J. Hornick, K.K. Pfister, W.S. Lane, G.K. Chan, E.H. Hinchcliffe, P.S. Vaughan and K.T. Vaughan. 2008. Phosphorylation Regulates Targeting of Cytoplasmic Dynein to Kinetochores During Mitosis. J. Cell Biology, 183(5):819-34.PDF

26. Heit R., J.B. Rattner, Gordon K.T. Chan, and Michael J Hendzel. 2009. G2 Methylation is critical for the proper segregation of chromosomes. J. Cell Science, 122(Pt 16):2957-68. PDF

27. Famulski J.K., L.J. Vos, Rattner J.B. and G.K. Chan. 2011. Dynein/dynactin-mediated transport of kinetochore components off kinetochores and onto spindle poles induced by Nordihydroguaiaretic acid. PLoS ONE 6(1): e16494. doi:10.1371/journal.pone.0016494. PDF

28. Vos L.J., Famulski J.K. and G.K. Chan. 2011. hZwint-1 Bridges the Inner and Outer Kinetochore: Identification of the Kinetochore Localization Domain and the hZw10 Interaction Domain. Biochemical Journal 436(1):157-68. PDF

29. Kasuboski JM, Bader JR, Vaughan PS, Tauhata SB, Winding M, Morrissey MM, Joyce MV, Boggess W, Vos L, Chan GK, Hinchcliffe EH, Vaughan KT. 2011. Zwint-1 is a Novel Aurora B Substrate Required for the Assembly of a Dynein-binding Platform on Kinetochores. Mol Biol Cell epub July 2011. PDF

30. Bennett MJ, Gordon K. Chan, J.B. Rattner, David C. Schriemer. 2012. Low dose laulimalide represents a novel molecular probe for investigating microtubule organization. Cell Cycle 11(16):3045-54. PDF

31. Lee S, Yong-Yea Park, Song-Hee Kim, Oanh T Kim Nguyen, Young-Suk Yoo, Gordon K Chan, Xuejun Sun and Hyeseong Cho. Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cellular and Molecular Life Science 71(4):711-25 PDF

32. Wang K., Sturt-Gillespie B., Hittle J., McDonald D., Chan G.K., Yen T., Liu S.T. 2014. Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint silencing protein. J Biol Chem. 289(34):23928-37. PDF

33. Moudgil K.D., Westcott N., Famulski J.K., Patel K., Macdonald D., Hang H., Chan G.K.T. 2015. A novel role of farnesylation in targeting a mitotic checkpoint protein, human Spindly to kinetochores. J. Cell Biology 208(7):881-96. PDF

34. Moudgil K.D. and Chan G.K.T. 2015. Lipids beyond membranes; farnesylation targets Spindly to kinetochores. Cell Cycle 14:14, 1-2. PDF

35. Ou Y., Chan G.K., Zou J., Rattner J.B. and van der Hoorn F. 2016. Purinergic A2b receptor activation by extracellular cues affects positioning of centrosome and nucleus and causes reduced cell migration. J Biol Chem. 291(29):15388-403. PDF

35. Ayoub A.T., Abou El-Magd R.M., Xiao J, Lewis C.W., Tilli T., Arakawa K., Nindita Y., Chan G., Sun L., Glover J.N., Klobukowski M., and Tuszynski J.A. 2016 Antitumor activity of lankacidin group antibiotics is due to microtubule stabilization via a paclitaxel-like mechanism. J Med Chem 59(20):9532-9540. PDF

36. Lewis C.W., Jin Z., Macdonald D., Wei W., Qian X.J., Choi W.S., He R., Sun X., and Chan G.K. 2017. Prolonged mitotic arrest induced by Wee1 inhibition sensitizes breast cancer cells to paclitaxel. Oncotarget doi: 10.18632/oncotarget.17848. PDF